这里主要讲一些列的字符串序列化,其实很简单。
- /* Listpack -- A lists of strings serialization format
- *
- * This file implements the specification you can find at:
- *
- * https://github.com/antirez/listpack
- *
- * Copyright (c) 2017, Salvatore Sanfilippo <antirez at gmail dot com>
- * Copyright (c) 2020, Redis Labs, Inc
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are met:
- *
- * * Redistributions of source code must retain the above copyright notice,
- * this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * * Neither the name of Redis nor the names of its contributors may be used
- * to endorse or promote products derived from this software without
- * specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- * POSSIBILITY OF SUCH DAMAGE.
- */
-
- #include <stdint.h>
- #include <limits.h>
- #include <sys/types.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
-
- #include "listpack.h"
- #include "listpack_malloc.h"
- #include "redisassert.h"
-
- #define LP_HDR_SIZE 6 /* 32 bit total len + 16 bit number of elements. */
- #define LP_HDR_NUMELE_UNKNOWN UINT16_MAX
- #define LP_MAX_INT_ENCODING_LEN 9
- #define LP_MAX_BACKLEN_SIZE 5
- #define LP_MAX_ENTRY_BACKLEN 34359738367ULL
- #define LP_ENCODING_INT 0
- #define LP_ENCODING_STRING 1
-
- #define LP_ENCODING_7BIT_UINT 0
- #define LP_ENCODING_7BIT_UINT_MASK 0x80
- #define LP_ENCODING_IS_7BIT_UINT(byte) (((byte)&LP_ENCODING_7BIT_UINT_MASK)==LP_ENCODING_7BIT_UINT)
-
- #define LP_ENCODING_6BIT_STR 0x80
- #define LP_ENCODING_6BIT_STR_MASK 0xC0
- #define LP_ENCODING_IS_6BIT_STR(byte) (((byte)&LP_ENCODING_6BIT_STR_MASK)==LP_ENCODING_6BIT_STR)
-
- #define LP_ENCODING_13BIT_INT 0xC0
- #define LP_ENCODING_13BIT_INT_MASK 0xE0
- #define LP_ENCODING_IS_13BIT_INT(byte) (((byte)&LP_ENCODING_13BIT_INT_MASK)==LP_ENCODING_13BIT_INT)
-
- #define LP_ENCODING_12BIT_STR 0xE0
- #define LP_ENCODING_12BIT_STR_MASK 0xF0
- #define LP_ENCODING_IS_12BIT_STR(byte) (((byte)&LP_ENCODING_12BIT_STR_MASK)==LP_ENCODING_12BIT_STR)
-
- #define LP_ENCODING_16BIT_INT 0xF1
- #define LP_ENCODING_16BIT_INT_MASK 0xFF
- #define LP_ENCODING_IS_16BIT_INT(byte) (((byte)&LP_ENCODING_16BIT_INT_MASK)==LP_ENCODING_16BIT_INT)
-
- #define LP_ENCODING_24BIT_INT 0xF2
- #define LP_ENCODING_24BIT_INT_MASK 0xFF
- #define LP_ENCODING_IS_24BIT_INT(byte) (((byte)&LP_ENCODING_24BIT_INT_MASK)==LP_ENCODING_24BIT_INT)
-
- #define LP_ENCODING_32BIT_INT 0xF3
- #define LP_ENCODING_32BIT_INT_MASK 0xFF
- #define LP_ENCODING_IS_32BIT_INT(byte) (((byte)&LP_ENCODING_32BIT_INT_MASK)==LP_ENCODING_32BIT_INT)
-
- #define LP_ENCODING_64BIT_INT 0xF4
- #define LP_ENCODING_64BIT_INT_MASK 0xFF
- #define LP_ENCODING_IS_64BIT_INT(byte) (((byte)&LP_ENCODING_64BIT_INT_MASK)==LP_ENCODING_64BIT_INT)
-
- #define LP_ENCODING_32BIT_STR 0xF0
- #define LP_ENCODING_32BIT_STR_MASK 0xFF
- #define LP_ENCODING_IS_32BIT_STR(byte) (((byte)&LP_ENCODING_32BIT_STR_MASK)==LP_ENCODING_32BIT_STR)
-
- #define LP_EOF 0xFF
-
- #define LP_ENCODING_6BIT_STR_LEN(p) ((p)[0] & 0x3F)
- #define LP_ENCODING_12BIT_STR_LEN(p) ((((p)[0] & 0xF) << 8) | (p)[1])
- #define LP_ENCODING_32BIT_STR_LEN(p) (((uint32_t)(p)[1]<<0) | \
- ((uint32_t)(p)[2]<<8) | \
- ((uint32_t)(p)[3]<<16) | \
- ((uint32_t)(p)[4]<<24))
-
- #define lpGetTotalBytes(p) (((uint32_t)(p)[0]<<0) | \
- ((uint32_t)(p)[1]<<8) | \
- ((uint32_t)(p)[2]<<16) | \
- ((uint32_t)(p)[3]<<24))
-
- #define lpGetNumElements(p) (((uint32_t)(p)[4]<<0) | \
- ((uint32_t)(p)[5]<<8))
- #define lpSetTotalBytes(p,v) do { \
- (p)[0] = (v)&0xff; \
- (p)[1] = ((v)>>8)&0xff; \
- (p)[2] = ((v)>>16)&0xff; \
- (p)[3] = ((v)>>24)&0xff; \
- } while(0)
-
- #define lpSetNumElements(p,v) do { \
- (p)[4] = (v)&0xff; \
- (p)[5] = ((v)>>8)&0xff; \
- } while(0)
-
- /* Validates that 'p' is not ouside the listpack.
- * All function that return a pointer to an element in the listpack will assert
- * that this element is valid, so it can be freely used.
- * Generally functions such lpNext and lpDelete assume the input pointer is
- * already validated (since it's the return value of another function). */
- #define ASSERT_INTEGRITY(lp, p) do { \
- assert((p) >= (lp)+LP_HDR_SIZE && (p) < (lp)+lpGetTotalBytes((lp))); \
- } while (0)
-
- /* Similar to the above, but validates the entire element lenth rather than just
- * it's pointer. */
- #define ASSERT_INTEGRITY_LEN(lp, p, len) do { \
- assert((p) >= (lp)+LP_HDR_SIZE && (p)+(len) < (lp)+lpGetTotalBytes((lp))); \
- } while (0)
-
- static inline void lpAssertValidEntry(unsigned char* lp, size_t lpbytes, unsigned char *p);
-
- /* Convert a string into a signed 64 bit integer.
- * The function returns 1 if the string could be parsed into a (non-overflowing)
- * signed 64 bit int, 0 otherwise. The 'value' will be set to the parsed value
- * when the function returns success.
- *
- * Note that this function demands that the string strictly represents
- * a int64 value: no spaces or other characters before or after the string
- * representing the number are accepted, nor zeroes at the start if not
- * for the string "0" representing the zero number.
- *
- * Because of its strictness, it is safe to use this function to check if
- * you can convert a string into a long long, and obtain back the string
- * from the number without any loss in the string representation. *
- *
- * -----------------------------------------------------------------------------
- *
- * Credits: this function was adapted from the Redis source code, file
- * "utils.c", function string2ll(), and is copyright:
- *
- * Copyright(C) 2011, Pieter Noordhuis
- * Copyright(C) 2011, Salvatore Sanfilippo
- *
- * The function is released under the BSD 3-clause license.
- */
- int lpStringToInt64(const char *s, unsigned long slen, int64_t *value) {
- const char *p = s;
- unsigned long plen = 0;
- int negative = 0;
- uint64_t v;
-
- if (plen == slen)
- return 0;
-
- /* Special case: first and only digit is 0. */
- if (slen == 1 && p[0] == '0') {
- if (value != NULL) *value = 0;
- return 1;
- }
-
- if (p[0] == '-') {
- negative = 1;
- p++; plen++;
-
- /* Abort on only a negative sign. */
- if (plen == slen)
- return 0;
- }
-
- /* First digit should be 1-9, otherwise the string should just be 0. */
- if (p[0] >= '1' && p[0] <= '9') {
- v = p[0]-'0';
- p++; plen++;
- } else if (p[0] == '0' && slen == 1) {
- *value = 0;
- return 1;
- } else {
- return 0;
- }
-
- while (plen < slen && p[0] >= '0' && p[0] <= '9') {
- if (v > (UINT64_MAX / 10)) /* Overflow. */
- return 0;
- v *= 10;
-
- if (v > (UINT64_MAX - (p[0]-'0'))) /* Overflow. */
- return 0;
- v += p[0]-'0';
-
- p++; plen++;
- }
-
- /* Return if not all bytes were used. */
- if (plen < slen)
- return 0;
-
- if (negative) {
- if (v > ((uint64_t)(-(INT64_MIN+1))+1)) /* Overflow. */
- return 0;
- if (value != NULL) *value = -v;
- } else {
- if (v > INT64_MAX) /* Overflow. */
- return 0;
- if (value != NULL) *value = v;
- }
- return 1;
- }
-
- /* Create a new, empty listpack.
- * On success the new listpack is returned, otherwise an error is returned.
- * Pre-allocate at least `capacity` bytes of memory,
- * over-allocated memory can be shrinked by `lpShrinkToFit`.
- * */
- unsigned char *lpNew(size_t capacity) {
- unsigned char *lp = lp_malloc(capacity > LP_HDR_SIZE+1 ? capacity : LP_HDR_SIZE+1);
- if (lp == NULL) return NULL;
- lpSetTotalBytes(lp,LP_HDR_SIZE+1);
- lpSetNumElements(lp,0);
- lp[LP_HDR_SIZE] = LP_EOF;
- return lp;
- }
-
- /* Free the specified listpack. */
- void lpFree(unsigned char *lp) {
- lp_free(lp);
- }
-
- /* Shrink the memory to fit. */
- unsigned char* lpShrinkToFit(unsigned char *lp) {
- size_t size = lpGetTotalBytes(lp);
- if (size < lp_malloc_size(lp)) {
- return lp_realloc(lp, size);
- } else {
- return lp;
- }
- }
-
- /* Given an element 'ele' of size 'size', determine if the element can be
- * represented inside the listpack encoded as integer, and returns
- * LP_ENCODING_INT if so. Otherwise returns LP_ENCODING_STR if no integer
- * encoding is possible.
- *
- * If the LP_ENCODING_INT is returned, the function stores the integer encoded
- * representation of the element in the 'intenc' buffer.
- *
- * Regardless of the returned encoding, 'enclen' is populated by reference to
- * the number of bytes that the string or integer encoded element will require
- * in order to be represented. */
- int lpEncodeGetType(unsigned char *ele, uint32_t size, unsigned char *intenc, uint64_t *enclen) {
- int64_t v;
- if (lpStringToInt64((const char*)ele, size, &v)) {
- if (v >= 0 && v <= 127) {
- /* Single byte 0-127 integer. */
- intenc[0] = v;
- *enclen = 1;
- } else if (v >= -4096 && v <= 4095) {
- /* 13 bit integer. */
- if (v < 0) v = ((int64_t)1<<13)+v;
- intenc[0] = (v>>8)|LP_ENCODING_13BIT_INT;
- intenc[1] = v&0xff;
- *enclen = 2;
- } else if (v >= -32768 && v <= 32767) {
- /* 16 bit integer. */
- if (v < 0) v = ((int64_t)1<<16)+v;
- intenc[0] = LP_ENCODING_16BIT_INT;
- intenc[1] = v&0xff;
- intenc[2] = v>>8;
- *enclen = 3;
- } else if (v >= -8388608 && v <= 8388607) {
- /* 24 bit integer. */
- if (v < 0) v = ((int64_t)1<<24)+v;
- intenc[0] = LP_ENCODING_24BIT_INT;
- intenc[1] = v&0xff;
- intenc[2] = (v>>8)&0xff;
- intenc[3] = v>>16;
- *enclen = 4;
- } else if (v >= -2147483648 && v <= 2147483647) {
- /* 32 bit integer. */
- if (v < 0) v = ((int64_t)1<<32)+v;
- intenc[0] = LP_ENCODING_32BIT_INT;
- intenc[1] = v&0xff;
- intenc[2] = (v>>8)&0xff;
- intenc[3] = (v>>16)&0xff;
- intenc[4] = v>>24;
- *enclen = 5;
- } else {
- /* 64 bit integer. */
- uint64_t uv = v;
- intenc[0] = LP_ENCODING_64BIT_INT;
- intenc[1] = uv&0xff;
- intenc[2] = (uv>>8)&0xff;
- intenc[3] = (uv>>16)&0xff;
- intenc[4] = (uv>>24)&0xff;
- intenc[5] = (uv>>32)&0xff;
- intenc[6] = (uv>>40)&0xff;
- intenc[7] = (uv>>48)&0xff;
- intenc[8] = uv>>56;
- *enclen = 9;
- }
- return LP_ENCODING_INT;
- } else {
- if (size < 64) *enclen = 1+size;
- else if (size < 4096) *enclen = 2+size;
- else *enclen = 5+(uint64_t)size;
- return LP_ENCODING_STRING;
- }
- }
-
- /* Store a reverse-encoded variable length field, representing the length
- * of the previous element of size 'l', in the target buffer 'buf'.
- * The function returns the number of bytes used to encode it, from
- * 1 to 5. If 'buf' is NULL the function just returns the number of bytes
- * needed in order to encode the backlen. */
- unsigned long lpEncodeBacklen(unsigned char *buf, uint64_t l) {
- if (l <= 127) {
- if (buf) buf[0] = l;
- return 1;
- } else if (l < 16383) {
- if (buf) {
- buf[0] = l>>7;
- buf[1] = (l&127)|128;
- }
- return 2;
- } else if (l < 2097151) {
- if (buf) {
- buf[0] = l>>14;
- buf[1] = ((l>>7)&127)|128;
- buf[2] = (l&127)|128;
- }
- return 3;
- } else if (l < 268435455) {
- if (buf) {
- buf[0] = l>>21;
- buf[1] = ((l>>14)&127)|128;
- buf[2] = ((l>>7)&127)|128;
- buf[3] = (l&127)|128;
- }
- return 4;
- } else {
- if (buf) {
- buf[0] = l>>28;
- buf[1] = ((l>>21)&127)|128;
- buf[2] = ((l>>14)&127)|128;
- buf[3] = ((l>>7)&127)|128;
- buf[4] = (l&127)|128;
- }
- return 5;
- }
- }
-
- /* Decode the backlen and returns it. If the encoding looks invalid (more than
- * 5 bytes are used), UINT64_MAX is returned to report the problem. */
- uint64_t lpDecodeBacklen(unsigned char *p) {
- uint64_t val = 0;
- uint64_t shift = 0;
- do {
- val |= (uint64_t)(p[0] & 127) << shift;
- if (!(p[0] & 128)) break;
- shift += 7;
- p--;
- if (shift > 28) return UINT64_MAX;
- } while(1);
- return val;
- }
-
- /* Encode the string element pointed by 's' of size 'len' in the target
- * buffer 's'. The function should be called with 'buf' having always enough
- * space for encoding the string. This is done by calling lpEncodeGetType()
- * before calling this function. */
- void lpEncodeString(unsigned char *buf, unsigned char *s, uint32_t len) {
- if (len < 64) {
- buf[0] = len | LP_ENCODING_6BIT_STR;
- memcpy(buf+1,s,len);
- } else if (len < 4096) {
- buf[0] = (len >> 8) | LP_ENCODING_12BIT_STR;
- buf[1] = len & 0xff;
- memcpy(buf+2,s,len);
- } else {
- buf[0] = LP_ENCODING_32BIT_STR;
- buf[1] = len & 0xff;
- buf[2] = (len >> 8) & 0xff;
- buf[3] = (len >> 16) & 0xff;
- buf[4] = (len >> 24) & 0xff;
- memcpy(buf+5,s,len);
- }
- }
-
- /* Return the encoded length of the listpack element pointed by 'p'.
- * This includes the encoding byte, length bytes, and the element data itself.
- * If the element encoding is wrong then 0 is returned.
- * Note that this method may access additional bytes (in case of 12 and 32 bit
- * str), so should only be called when we know 'p' was already validated by
- * lpCurrentEncodedSizeBytes or ASSERT_INTEGRITY_LEN (possibly since 'p' is
- * a return value of another function that validated its return. */
- uint32_t lpCurrentEncodedSizeUnsafe(unsigned char *p) {
- if (LP_ENCODING_IS_7BIT_UINT(p[0])) return 1;
- if (LP_ENCODING_IS_6BIT_STR(p[0])) return 1+LP_ENCODING_6BIT_STR_LEN(p);
- if (LP_ENCODING_IS_13BIT_INT(p[0])) return 2;
- if (LP_ENCODING_IS_16BIT_INT(p[0])) return 3;
- if (LP_ENCODING_IS_24BIT_INT(p[0])) return 4;
- if (LP_ENCODING_IS_32BIT_INT(p[0])) return 5;
- if (LP_ENCODING_IS_64BIT_INT(p[0])) return 9;
- if (LP_ENCODING_IS_12BIT_STR(p[0])) return 2+LP_ENCODING_12BIT_STR_LEN(p);
- if (LP_ENCODING_IS_32BIT_STR(p[0])) return 5+LP_ENCODING_32BIT_STR_LEN(p);
- if (p[0] == LP_EOF) return 1;
- return 0;
- }
-
- /* Return bytes needed to encode the length of the listpack element pointed by 'p'.
- * This includes just the encodign byte, and the bytes needed to encode the length
- * of the element (excluding the element data itself)
- * If the element encoding is wrong then 0 is returned. */
- uint32_t lpCurrentEncodedSizeBytes(unsigned char *p) {
- if (LP_ENCODING_IS_7BIT_UINT(p[0])) return 1;
- if (LP_ENCODING_IS_6BIT_STR(p[0])) return 1;
- if (LP_ENCODING_IS_13BIT_INT(p[0])) return 1;
- if (LP_ENCODING_IS_16BIT_INT(p[0])) return 1;
- if (LP_ENCODING_IS_24BIT_INT(p[0])) return 1;
- if (LP_ENCODING_IS_32BIT_INT(p[0])) return 1;
- if (LP_ENCODING_IS_64BIT_INT(p[0])) return 1;
- if (LP_ENCODING_IS_12BIT_STR(p[0])) return 2;
- if (LP_ENCODING_IS_32BIT_STR(p[0])) return 5;
- if (p[0] == LP_EOF) return 1;
- return 0;
- }
-
- /* Skip the current entry returning the next. It is invalid to call this
- * function if the current element is the EOF element at the end of the
- * listpack, however, while this function is used to implement lpNext(),
- * it does not return NULL when the EOF element is encountered. */
- unsigned char *lpSkip(unsigned char *p) {
- unsigned long entrylen = lpCurrentEncodedSizeUnsafe(p);
- entrylen += lpEncodeBacklen(NULL,entrylen);
- p += entrylen;
- return p;
- }
-
- /* If 'p' points to an element of the listpack, calling lpNext() will return
- * the pointer to the next element (the one on the right), or NULL if 'p'
- * already pointed to the last element of the listpack. */
- unsigned char *lpNext(unsigned char *lp, unsigned char *p) {
- assert(p);
- p = lpSkip(p);
- if (p[0] == LP_EOF) return NULL;
- lpAssertValidEntry(lp, lpBytes(lp), p);
- return p;
- }
-
- /* If 'p' points to an element of the listpack, calling lpPrev() will return
- * the pointer to the previous element (the one on the left), or NULL if 'p'
- * already pointed to the first element of the listpack. */
- unsigned char *lpPrev(unsigned char *lp, unsigned char *p) {
- assert(p);
- if (p-lp == LP_HDR_SIZE) return NULL;
- p--; /* Seek the first backlen byte of the last element. */
- uint64_t prevlen = lpDecodeBacklen(p);
- prevlen += lpEncodeBacklen(NULL,prevlen);
- p -= prevlen-1; /* Seek the first byte of the previous entry. */
- lpAssertValidEntry(lp, lpBytes(lp), p);
- return p;
- }
-
- /* Return a pointer to the first element of the listpack, or NULL if the
- * listpack has no elements. */
- unsigned char *lpFirst(unsigned char *lp) {
- unsigned char *p = lp + LP_HDR_SIZE; /* Skip the header. */
- if (p[0] == LP_EOF) return NULL;
- lpAssertValidEntry(lp, lpBytes(lp), p);
- return p;
- }
-
- /* Return a pointer to the last element of the listpack, or NULL if the
- * listpack has no elements. */
- unsigned char *lpLast(unsigned char *lp) {
- unsigned char *p = lp+lpGetTotalBytes(lp)-1; /* Seek EOF element. */
- return lpPrev(lp,p); /* Will return NULL if EOF is the only element. */
- }
-
- /* Return the number of elements inside the listpack. This function attempts
- * to use the cached value when within range, otherwise a full scan is
- * needed. As a side effect of calling this function, the listpack header
- * could be modified, because if the count is found to be already within
- * the 'numele' header field range, the new value is set. */
- uint32_t lpLength(unsigned char *lp) {
- uint32_t numele = lpGetNumElements(lp);
- if (numele != LP_HDR_NUMELE_UNKNOWN) return numele;
-
- /* Too many elements inside the listpack. We need to scan in order
- * to get the total number. */
- uint32_t count = 0;
- unsigned char *p = lpFirst(lp);
- while(p) {
- count++;
- p = lpNext(lp,p);
- }
-
- /* If the count is again within range of the header numele field,
- * set it. */
- if (count < LP_HDR_NUMELE_UNKNOWN) lpSetNumElements(lp,count);
- return count;
- }
-
- /* Return the listpack element pointed by 'p'.
- *
- * The function changes behavior depending on the passed 'intbuf' value.
- * Specifically, if 'intbuf' is NULL:
- *
- * If the element is internally encoded as an integer, the function returns
- * NULL and populates the integer value by reference in 'count'. Otherwise if
- * the element is encoded as a string a pointer to the string (pointing inside
- * the listpack itself) is returned, and 'count' is set to the length of the
- * string.
- *
- * If instead 'intbuf' points to a buffer passed by the caller, that must be
- * at least LP_INTBUF_SIZE bytes, the function always returns the element as
- * it was a string (returning the pointer to the string and setting the
- * 'count' argument to the string length by reference). However if the element
- * is encoded as an integer, the 'intbuf' buffer is used in order to store
- * the string representation.
- *
- * The user should use one or the other form depending on what the value will
- * be used for. If there is immediate usage for an integer value returned
- * by the function, than to pass a buffer (and convert it back to a number)
- * is of course useless.
- *
- * If the function is called against a badly encoded ziplist, so that there
- * is no valid way to parse it, the function returns like if there was an
- * integer encoded with value 12345678900000000 + <unrecognized byte>, this may
- * be an hint to understand that something is wrong. To crash in this case is
- * not sensible because of the different requirements of the application using
- * this lib.
- *
- * Similarly, there is no error returned since the listpack normally can be
- * assumed to be valid, so that would be a very high API cost. However a function
- * in order to check the integrity of the listpack at load time is provided,
- * check lpIsValid(). */
- unsigned char *lpGet(unsigned char *p, int64_t *count, unsigned char *intbuf) {
- int64_t val;
- uint64_t uval, negstart, negmax;
-
- assert(p); /* assertion for valgrind (avoid NPD) */
- if (LP_ENCODING_IS_7BIT_UINT(p[0])) {
- negstart = UINT64_MAX; /* 7 bit ints are always positive. */
- negmax = 0;
- uval = p[0] & 0x7f;
- } else if (LP_ENCODING_IS_6BIT_STR(p[0])) {
- *count = LP_ENCODING_6BIT_STR_LEN(p);
- return p+1;
- } else if (LP_ENCODING_IS_13BIT_INT(p[0])) {
- uval = ((p[0]&0x1f)<<8) | p[1];
- negstart = (uint64_t)1<<12;
- negmax = 8191;
- } else if (LP_ENCODING_IS_16BIT_INT(p[0])) {
- uval = (uint64_t)p[1] |
- (uint64_t)p[2]<<8;
- negstart = (uint64_t)1<<15;
- negmax = UINT16_MAX;
- } else if (LP_ENCODING_IS_24BIT_INT(p[0])) {
- uval = (uint64_t)p[1] |
- (uint64_t)p[2]<<8 |
- (uint64_t)p[3]<<16;
- negstart = (uint64_t)1<<23;
- negmax = UINT32_MAX>>8;
- } else if (LP_ENCODING_IS_32BIT_INT(p[0])) {
- uval = (uint64_t)p[1] |
- (uint64_t)p[2]<<8 |
- (uint64_t)p[3]<<16 |
- (uint64_t)p[4]<<24;
- negstart = (uint64_t)1<<31;
- negmax = UINT32_MAX;
- } else if (LP_ENCODING_IS_64BIT_INT(p[0])) {
- uval = (uint64_t)p[1] |
- (uint64_t)p[2]<<8 |
- (uint64_t)p[3]<<16 |
- (uint64_t)p[4]<<24 |
- (uint64_t)p[5]<<32 |
- (uint64_t)p[6]<<40 |
- (uint64_t)p[7]<<48 |
- (uint64_t)p[8]<<56;
- negstart = (uint64_t)1<<63;
- negmax = UINT64_MAX;
- } else if (LP_ENCODING_IS_12BIT_STR(p[0])) {
- *count = LP_ENCODING_12BIT_STR_LEN(p);
- return p+2;
- } else if (LP_ENCODING_IS_32BIT_STR(p[0])) {
- *count = LP_ENCODING_32BIT_STR_LEN(p);
- return p+5;
- } else {
- uval = 12345678900000000ULL + p[0];
- negstart = UINT64_MAX;
- negmax = 0;
- }
-
- /* We reach this code path only for integer encodings.
- * Convert the unsigned value to the signed one using two's complement
- * rule. */
- if (uval >= negstart) {
- /* This three steps conversion should avoid undefined behaviors
- * in the unsigned -> signed conversion. */
- uval = negmax-uval;
- val = uval;
- val = -val-1;
- } else {
- val = uval;
- }
-
- /* Return the string representation of the integer or the value itself
- * depending on intbuf being NULL or not. */
- if (intbuf) {
- *count = snprintf((char*)intbuf,LP_INTBUF_SIZE,"%lld",(long long)val);
- return intbuf;
- } else {
- *count = val;
- return NULL;
- }
- }
-
- /* Insert, delete or replace the specified element 'ele' of length 'len' at
- * the specified position 'p', with 'p' being a listpack element pointer
- * obtained with lpFirst(), lpLast(), lpNext(), lpPrev() or lpSeek().
- *
- * The element is inserted before, after, or replaces the element pointed
- * by 'p' depending on the 'where' argument, that can be LP_BEFORE, LP_AFTER
- * or LP_REPLACE.
- *
- * If 'ele' is set to NULL, the function removes the element pointed by 'p'
- * instead of inserting one.
- *
- * Returns NULL on out of memory or when the listpack total length would exceed
- * the max allowed size of 2^32-1, otherwise the new pointer to the listpack
- * holding the new element is returned (and the old pointer passed is no longer
- * considered valid)
- *
- * If 'newp' is not NULL, at the end of a successful call '*newp' will be set
- * to the address of the element just added, so that it will be possible to
- * continue an interation with lpNext() and lpPrev().
- *
- * For deletion operations ('ele' set to NULL) 'newp' is set to the next
- * element, on the right of the deleted one, or to NULL if the deleted element
- * was the last one. */
- unsigned char *lpInsert(unsigned char *lp, unsigned char *ele, uint32_t size, unsigned char *p, int where, unsigned char **newp) {
- unsigned char intenc[LP_MAX_INT_ENCODING_LEN];
- unsigned char backlen[LP_MAX_BACKLEN_SIZE];
-
- uint64_t enclen; /* The length of the encoded element. */
-
- /* An element pointer set to NULL means deletion, which is conceptually
- * replacing the element with a zero-length element. So whatever we
- * get passed as 'where', set it to LP_REPLACE. */
- if (ele == NULL) where = LP_REPLACE;
-
- /* If we need to insert after the current element, we just jump to the
- * next element (that could be the EOF one) and handle the case of
- * inserting before. So the function will actually deal with just two
- * cases: LP_BEFORE and LP_REPLACE. */
- if (where == LP_AFTER) {
- p = lpSkip(p);
- where = LP_BEFORE;
- ASSERT_INTEGRITY(lp, p);
- }
-
- /* Store the offset of the element 'p', so that we can obtain its
- * address again after a reallocation. */
- unsigned long poff = p-lp;
-
- /* Calling lpEncodeGetType() results into the encoded version of the
- * element to be stored into 'intenc' in case it is representable as
- * an integer: in that case, the function returns LP_ENCODING_INT.
- * Otherwise if LP_ENCODING_STR is returned, we'll have to call
- * lpEncodeString() to actually write the encoded string on place later.
- *
- * Whatever the returned encoding is, 'enclen' is populated with the
- * length of the encoded element. */
- int enctype;
- if (ele) {
- enctype = lpEncodeGetType(ele,size,intenc,&enclen);
- } else {
- enctype = -1;
- enclen = 0;
- }
-
- /* We need to also encode the backward-parsable length of the element
- * and append it to the end: this allows to traverse the listpack from
- * the end to the start. */
- unsigned long backlen_size = ele ? lpEncodeBacklen(backlen,enclen) : 0;
- uint64_t old_listpack_bytes = lpGetTotalBytes(lp);
- uint32_t replaced_len = 0;
- if (where == LP_REPLACE) {
- replaced_len = lpCurrentEncodedSizeUnsafe(p);
- replaced_len += lpEncodeBacklen(NULL,replaced_len);
- ASSERT_INTEGRITY_LEN(lp, p, replaced_len);
- }
-
- uint64_t new_listpack_bytes = old_listpack_bytes + enclen + backlen_size
- - replaced_len;
- if (new_listpack_bytes > UINT32_MAX) return NULL;
-
- /* We now need to reallocate in order to make space or shrink the
- * allocation (in case 'when' value is LP_REPLACE and the new element is
- * smaller). However we do that before memmoving the memory to
- * make room for the new element if the final allocation will get
- * larger, or we do it after if the final allocation will get smaller. */
-
- unsigned char *dst = lp + poff; /* May be updated after reallocation. */
-
- /* Realloc before: we need more room. */
- if (new_listpack_bytes > old_listpack_bytes &&
- new_listpack_bytes > lp_malloc_size(lp)) {
- if ((lp = lp_realloc(lp,new_listpack_bytes)) == NULL) return NULL;
- dst = lp + poff;
- }
-
- /* Setup the listpack relocating the elements to make the exact room
- * we need to store the new one. */
- if (where == LP_BEFORE) {
- memmove(dst+enclen+backlen_size,dst,old_listpack_bytes-poff);
- } else { /* LP_REPLACE. */
- long lendiff = (enclen+backlen_size)-replaced_len;
- memmove(dst+replaced_len+lendiff,
- dst+replaced_len,
- old_listpack_bytes-poff-replaced_len);
- }
-
- /* Realloc after: we need to free space. */
- if (new_listpack_bytes < old_listpack_bytes) {
- if ((lp = lp_realloc(lp,new_listpack_bytes)) == NULL) return NULL;
- dst = lp + poff;
- }
-
- /* Store the entry. */
- if (newp) {
- *newp = dst;
- /* In case of deletion, set 'newp' to NULL if the next element is
- * the EOF element. */
- if (!ele && dst[0] == LP_EOF) *newp = NULL;
- }
- if (ele) {
- if (enctype == LP_ENCODING_INT) {
- memcpy(dst,intenc,enclen);
- } else {
- lpEncodeString(dst,ele,size);
- }
- dst += enclen;
- memcpy(dst,backlen,backlen_size);
- dst += backlen_size;
- }
-
- /* Update header. */
- if (where != LP_REPLACE || ele == NULL) {
- uint32_t num_elements = lpGetNumElements(lp);
- if (num_elements != LP_HDR_NUMELE_UNKNOWN) {
- if (ele)
- lpSetNumElements(lp,num_elements+1);
- else
- lpSetNumElements(lp,num_elements-1);
- }
- }
- lpSetTotalBytes(lp,new_listpack_bytes);
-
- #if 0
- /* This code path is normally disabled: what it does is to force listpack
- * to return *always* a new pointer after performing some modification to
- * the listpack, even if the previous allocation was enough. This is useful
- * in order to spot bugs in code using listpacks: by doing so we can find
- * if the caller forgets to set the new pointer where the listpack reference
- * is stored, after an update. */
- unsigned char *oldlp = lp;
- lp = lp_malloc(new_listpack_bytes);
- memcpy(lp,oldlp,new_listpack_bytes);
- if (newp) {
- unsigned long offset = (*newp)-oldlp;
- *newp = lp + offset;
- }
- /* Make sure the old allocation contains garbage. */
- memset(oldlp,'A',new_listpack_bytes);
- lp_free(oldlp);
- #endif
-
- return lp;
- }
-
- /* Append the specified element 'ele' of length 'len' at the end of the
- * listpack. It is implemented in terms of lpInsert(), so the return value is
- * the same as lpInsert(). */
- unsigned char *lpAppend(unsigned char *lp, unsigned char *ele, uint32_t size) {
- uint64_t listpack_bytes = lpGetTotalBytes(lp);
- unsigned char *eofptr = lp + listpack_bytes - 1;
- return lpInsert(lp,ele,size,eofptr,LP_BEFORE,NULL);
- }
-
- /* Remove the element pointed by 'p', and return the resulting listpack.
- * If 'newp' is not NULL, the next element pointer (to the right of the
- * deleted one) is returned by reference. If the deleted element was the
- * last one, '*newp' is set to NULL. */
- unsigned char *lpDelete(unsigned char *lp, unsigned char *p, unsigned char **newp) {
- return lpInsert(lp,NULL,0,p,LP_REPLACE,newp);
- }
-
- /* Return the total number of bytes the listpack is composed of. */
- uint32_t lpBytes(unsigned char *lp) {
- return lpGetTotalBytes(lp);
- }
-
- /* Seek the specified element and returns the pointer to the seeked element.
- * Positive indexes specify the zero-based element to seek from the head to
- * the tail, negative indexes specify elements starting from the tail, where
- * -1 means the last element, -2 the penultimate and so forth. If the index
- * is out of range, NULL is returned. */
- unsigned char *lpSeek(unsigned char *lp, long index) {
- int forward = 1; /* Seek forward by default. */
-
- /* We want to seek from left to right or the other way around
- * depending on the listpack length and the element position.
- * However if the listpack length cannot be obtained in constant time,
- * we always seek from left to right. */
- uint32_t numele = lpGetNumElements(lp);
- if (numele != LP_HDR_NUMELE_UNKNOWN) {
- if (index < 0) index = (long)numele+index;
- if (index < 0) return NULL; /* Index still < 0 means out of range. */
- if (index >= (long)numele) return NULL; /* Out of range the other side. */
- /* We want to scan right-to-left if the element we are looking for
- * is past the half of the listpack. */
- if (index > (long)numele/2) {
- forward = 0;
- /* Right to left scanning always expects a negative index. Convert
- * our index to negative form. */
- index -= numele;
- }
- } else {
- /* If the listpack length is unspecified, for negative indexes we
- * want to always scan right-to-left. */
- if (index < 0) forward = 0;
- }
-
- /* Forward and backward scanning is trivially based on lpNext()/lpPrev(). */
- if (forward) {
- unsigned char *ele = lpFirst(lp);
- while (index > 0 && ele) {
- ele = lpNext(lp,ele);
- index--;
- }
- return ele;
- } else {
- unsigned char *ele = lpLast(lp);
- while (index < -1 && ele) {
- ele = lpPrev(lp,ele);
- index++;
- }
- return ele;
- }
- }
-
- /* Same as lpFirst but without validation assert, to be used right before lpValidateNext. */
- unsigned char *lpValidateFirst(unsigned char *lp) {
- unsigned char *p = lp + LP_HDR_SIZE; /* Skip the header. */
- if (p[0] == LP_EOF) return NULL;
- return p;
- }
-
- /* Validate the integrity of a single listpack entry and move to the next one.
- * The input argument 'pp' is a reference to the current record and is advanced on exit.
- * Returns 1 if valid, 0 if invalid. */
- int lpValidateNext(unsigned char *lp, unsigned char **pp, size_t lpbytes) {
- #define OUT_OF_RANGE(p) ( \
- (p) < lp + LP_HDR_SIZE || \
- (p) > lp + lpbytes - 1)
- unsigned char *p = *pp;
- if (!p)
- return 0;
-
- /* Before accessing p, make sure it's valid. */
- if (OUT_OF_RANGE(p))
- return 0;
-
- if (*p == LP_EOF) {
- *pp = NULL;
- return 1;
- }
-
- /* check that we can read the encoded size */
- uint32_t lenbytes = lpCurrentEncodedSizeBytes(p);
- if (!lenbytes)
- return 0;
-
- /* make sure the encoded entry length doesn't rech outside the edge of the listpack */
- if (OUT_OF_RANGE(p + lenbytes))
- return 0;
-
- /* get the entry length and encoded backlen. */
- unsigned long entrylen = lpCurrentEncodedSizeUnsafe(p);
- unsigned long encodedBacklen = lpEncodeBacklen(NULL,entrylen);
- entrylen += encodedBacklen;
-
- /* make sure the entry doesn't rech outside the edge of the listpack */
- if (OUT_OF_RANGE(p + entrylen))
- return 0;
-
- /* move to the next entry */
- p += entrylen;
-
- /* make sure the encoded length at the end patches the one at the beginning. */
- uint64_t prevlen = lpDecodeBacklen(p-1);
- if (prevlen + encodedBacklen != entrylen)
- return 0;
-
- *pp = p;
- return 1;
- #undef OUT_OF_RANGE
- }
-
- /* Validate that the entry doesn't reach outside the listpack allocation. */
- static inline void lpAssertValidEntry(unsigned char* lp, size_t lpbytes, unsigned char *p) {
- assert(lpValidateNext(lp, &p, lpbytes));
- }
-
- /* Validate the integrity of the data structure.
- * when `deep` is 0, only the integrity of the header is validated.
- * when `deep` is 1, we scan all the entries one by one. */
- int lpValidateIntegrity(unsigned char *lp, size_t size, int deep){
- /* Check that we can actually read the header. (and EOF) */
- if (size < LP_HDR_SIZE + 1)
- return 0;
-
- /* Check that the encoded size in the header must match the allocated size. */
- size_t bytes = lpGetTotalBytes(lp);
- if (bytes != size)
- return 0;
-
- /* The last byte must be the terminator. */
- if (lp[size-1] != LP_EOF)
- return 0;
-
- if (!deep)
- return 1;
-
- /* Validate the invividual entries. */
- uint32_t count = 0;
- unsigned char *p = lp + LP_HDR_SIZE;
- while(p && p[0] != LP_EOF) {
- if (!lpValidateNext(lp, &p, bytes))
- return 0;
- count++;
- }
-
- /* Check that the count in the header is correct */
- uint32_t numele = lpGetNumElements(lp);
- if (numele != LP_HDR_NUMELE_UNKNOWN && numele != count)
- return 0;
-
- return 1;
- }